Public
Edited
Mar 25, 2021
19 forks
72 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
weather = (await require('vega-datasets@1'))['weather.csv']()
Insert cell
printTable(weather.slice(0, 10)) // first ten rows
Insert cell
printTable(weather.slice(-10)) // last ten rows
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
vl.markArea()
.data(weather)
.encode(
vl.x().month('date'),
vl.y().average('temp_max'),
vl.y2().average('temp_min')
)
.render()
Insert cell
Insert cell
vl.markArea({opacity: 0.3})
.data(weather)
.encode(
vl.x().month('date'),
vl.y().average('temp_max'),
vl.y2().average('temp_min'),
vl.color().fieldN('location')
)
.render()
Insert cell
Insert cell
vl.markLine()
.data(weather)
.transform(
vl.calculate('(datum.temp_min + datum.temp_max) / 2').as('temp_mid')
)
.encode(
vl.x().month('date'),
vl.y().average('temp_mid'),
vl.color().fieldN('location')
)
.render()
Insert cell
Insert cell
{
const tempMinMax = vl.markArea({opacity: 0.3})
.data(weather)
.encode(
vl.x().month('date'),
vl.y().average('temp_max'),
vl.y2().average('temp_min'),
vl.color().fieldN('location')
);

const tempMid = vl.markLine()
.data(weather)
.transform(
vl.calculate('(datum.temp_min + datum.temp_max) / 2').as('temp_mid')
)
.encode(
vl.x().month('date'),
vl.y().average('temp_mid'),
vl.color().fieldN('location')
);

return vl.layer(tempMinMax, tempMid).render();
}
Insert cell
Insert cell
{
const tempMinMax = vl.markArea({opacity: 0.3})
.data(weather)
.encode(
vl.x().month('date').title(null).axis({format: '%b'}),
vl.y().average('temp_max').title('Avg. Temperature °C'),
vl.y2().average('temp_min'),
vl.color().fieldN('location')
);

const tempMid = vl.markLine()
.data(weather)
.transform(
vl.calculate('(datum.temp_min + datum.temp_max) / 2').as('temp_mid')
)
.encode(
vl.x().month('date'),
vl.y().average('temp_mid'),
vl.color().fieldN('location')
);

return vl.layer(tempMinMax, tempMid).render();
}
Insert cell
Insert cell
{
const tempMinMax = vl.markArea({opacity: 0.3}).encode(
vl.x().month('date').title(null).axis({format: '%b'}),
vl.y().average('temp_max').title('Avg. Temperature °C'),
vl.y2().average('temp_min'),
vl.color().fieldN('location')
);

const tempMid = vl.markLine().encode(
vl.x().month('date'),
vl.y().average('temp_mid'),
vl.color().fieldN('location')
);

return vl.layer(tempMinMax, tempMid)
.data(weather)
.transform(vl.calculate('(datum.temp_min + datum.temp_max) / 2').as('temp_mid'))
.render();
}
Insert cell
Insert cell
Insert cell
vl.markLine({interpolate: 'monotone', stroke: 'grey'})
.data(weather)
.transform(
vl.filter('datum.location == "Seattle"')
)
.encode(
vl.x().month('date').title(null),
vl.y().average('precipitation').title('Precipitation')
)
.render()
Insert cell
Insert cell
{
const tempMinMax = vl.markArea({opacity: 0.3}).encode(
vl.x().month('date').title(null).axis({format: '%b'}),
vl.y().average('temp_max').title('Avg. Temperature °C'),
vl.y2().average('temp_min')
);
const precip = vl.markLine({interpolate: 'monotone', stroke: 'grey'}).encode(
vl.x().month('date').title(null),
vl.y().average('precipitation').title('Precipitation')
);
return vl.layer(tempMinMax, precip)
.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.render();
}
Insert cell
Insert cell
{
const tempMinMax = vl.markArea({opacity: 0.3}).encode(
vl.x().month('date').title(null).axis({format: '%b'}),
vl.y().average('temp_max').title('Avg. Temperature °C'),
vl.y2().average('temp_min')
);
const precip = vl.markLine({interpolate: 'monotone', stroke: 'grey'}).encode(
vl.x().month('date').title(null),
vl.y().average('precipitation').title('Precipitation')
);
return vl.layer(tempMinMax, precip)
.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.resolve({scale: {y: 'independent'}}) // resolve to independent y channel scales
.render();
}
Insert cell
Insert cell
Insert cell
Insert cell
vl.markBar()
.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.encode(
vl.x().fieldQ('temp_max').bin(true).title('Temperature (°C)'),
vl.y().count()
)
.render()
Insert cell
Insert cell
{
const colors = {
domain: ['drizzle', 'fog', 'rain', 'snow', 'sun'],
range: ['#aec7e8', '#c7c7c7', '#1f77b4', '#9467bd', '#e7ba52']
};
return vl.markBar()
.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.encode(
vl.x().fieldQ('temp_max').bin(true).title('Temperature (°C)'),
vl.y().count(),
vl.color().fieldN('weather').scale(colors),
vl.column().fieldN('weather')
)
.width(150)
.height(150)
.render();
}
Insert cell
Insert cell
{
const colors = {
domain: ['drizzle', 'fog', 'rain', 'snow', 'sun'],
range: ['#aec7e8', '#c7c7c7', '#1f77b4', '#9467bd', '#e7ba52']
};
return vl.markBar()
.encode(
vl.x().fieldQ('temp_max').bin(true).title('Temperature (°C)'),
vl.y().count(),
vl.color().fieldN('weather').scale(colors)
)
.width(150)
.height(150)
.facet({column: vl.field('weather')})
.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.render();
}
Insert cell
Insert cell
{
const tempMinMax = vl.markArea({opacity: 0.3}).encode(
vl.x().month('date').title(null).axis({format: '%b'}),
vl.y().average('temp_max').title('Avg. Temperature (°C)'),
vl.y2().average('temp_min'),
vl.color().fieldN('location')
);

const tempMid = vl.markLine().encode(
vl.x().month('date'),
vl.y().average('temp_mid'),
vl.color().fieldN('location')
);

return vl.layer(tempMinMax, tempMid)
.facet({column: vl.field('location')})
.data(weather)
.transform(vl.calculate('(datum.temp_min + datum.temp_max) / 2').as('temp_mid'))
.render();
}
Insert cell
Insert cell
{
const tempMinMax = vl.markArea({opacity: 0.3}).encode(
vl.x().month('date').title(null).axis({format: '%b'}),
vl.y().average('temp_max').title('Avg. Temperature (°C)'),
vl.y2().average('temp_min'),
vl.color().fieldN('location')
);

const tempMid = vl.markLine().encode(
vl.x().month('date'),
vl.y().average('temp_mid'),
vl.color().fieldN('location')
);

return vl.layer(tempMinMax, tempMid)
.facet({column: vl.field('location')})
.data(weather)
.transform(vl.calculate('(datum.temp_min + datum.temp_max) / 2').as('temp_mid'))
.resolve({axis: {y: 'independent'}})
.render();
}
Insert cell
Insert cell
{
const tempMinMax = vl.markArea({opacity: 0.3}).encode(
vl.x().month('date').title(null).axis({format: '%b'}),
vl.y().average('temp_max').title('Avg. Temperature (°C)'),
vl.y2().average('temp_min'),
vl.color().fieldN('location')
);

const tempMid = vl.markLine().encode(
vl.x().month('date'),
vl.y().average('temp_mid'),
vl.color().fieldN('location')
);

return vl.layer(tempMinMax, tempMid)
.facet({column: vl.field('location')})
.data(weather)
.transform(vl.calculate('(datum.temp_min + datum.temp_max) / 2').as('temp_mid'))
.resolve({scale: {y: 'independent'}})
.render();
}
Insert cell
Insert cell
Insert cell
Insert cell
vl.markLine()
.data(weather)
.encode(
vl.x().month('date').title(null),
vl.y().average('temp_max'),
vl.color().fieldN('location')
)
.render()
Insert cell
Insert cell
{
const base = vl.markLine()
.data(weather)
.encode(
vl.x().month('date').title(null),
vl.color().fieldN('location')
)
.width(240)
.height(180);

const temp = base.encode(vl.y().average('temp_max'));
const precip = base.encode(vl.y().average('precipitation'));
const wind = base.encode(vl.y().average('wind'));

return vl.hconcat(temp, precip, wind).render();
}
Insert cell
Insert cell
Insert cell
Insert cell
vl.markLine()
.data(weather)
.encode(
vl.x().month('date').title(null),
vl.y().average(vl.repeat('column')),
vl.color().fieldN('location')
)
.width(240)
.height(180)
.repeat({column: ['temp_max', 'precipitation', 'wind']})
.render();
Insert cell
Insert cell
vl.markCircle({size: 15, opacity: 0.5})
.encode(
vl.x().fieldQ(vl.repeat('column')),
vl.y().fieldQ(vl.repeat('row')),
)
.width(150)
.height(150)
.repeat({
row: ['temp_max', 'precipitation', 'wind'],
column: ['wind', 'precipitation', 'temp_max']
})
.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.render()
Insert cell
Insert cell
Insert cell
Insert cell
{
const basic1 = vl.markBar()
.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.encode(
vl.x().month('date').type('ordinal'),
vl.y().average('temp_max')
);
const basic2 = vl.markRule({stroke: 'firebrick'})
.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.encode(
vl.y().average('temp_max')
);

return vl.hconcat(basic1, basic2).render();
}
Insert cell
Insert cell
vl.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.layer(
vl.markBar().encode(
vl.x().month('date').type('ordinal').title('Month'),
vl.y().average(vl.repeat('column'))
),
vl.markRule({stroke: 'firebrick'}).encode(
vl.y().average(vl.repeat('column'))
)
)
.width(200)
.height(150)
.repeat({column: ['temp_max', 'precipitation', 'wind']})
.render();
Insert cell
Insert cell
{
const splom = vl.markCircle({size: 15, opacity: 0.5})
.encode(
vl.x().fieldQ(vl.repeat('column')),
vl.y().fieldQ(vl.repeat('row')),
)
.width(125)
.height(125)
.repeat({
row: ['temp_max', 'precipitation', 'wind'],
column: ['wind', 'precipitation', 'temp_max']
});
const dateHist = vl.layer(
vl.markBar().encode(
vl.x().month('date').type('ordinal').title('Month'),
vl.y().average(vl.repeat('row'))
),
vl.markRule({stroke: 'firebrick'}).encode(
vl.y().average(vl.repeat('row'))
)
)
.width(175)
.height(125)
.repeat({row: ['temp_max', 'precipitation', 'wind']});
const tempHist = vl.markBar()
.encode(
vl.x().fieldQ('temp_max').bin(true).title('Temperature (°C)'),
vl.y().count(),
vl.color().fieldN('weather').scale({
domain: ['drizzle', 'fog', 'rain', 'snow', 'sun'],
range: ['#aec7e8', '#c7c7c7', '#1f77b4', '#9467bd', '#e7ba52']
})
)
.width(115)
.height(100)
.facet({column: vl.field('weather')});
return vl.data(weather)
.transform(vl.filter('datum.location == "Seattle"'))
.title('Seattle Weather Dashboard')
.vconcat(
vl.hconcat(splom, dateHist),
tempHist
)
.resolve({legend: {color: 'independent'}})
.config({axis: {labelAngle: 0}})
.render();
}
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more